Paper Code Number: 4193 INTERMED		2024 (1 st -A) IATE PART-II (1	2 th Class)	Roll No: MTN-1-24			
	THEMATICS PA		OUP-I				
	E ALLOWED: 30	Minutes	OBJEC		XIMUM MARK		
Q.No			jective type questio				
	correct, fill tha	t bubble in front o	f that question num	ber, on bubble sh	eet. Use marker o	r pen to fill the	
G 11]			more bubbles will		k in that question.		
S.#	QUEST		A	<u>B</u>	.2	D 21.2	
1	Length of latus rad	ctum of empse	$\frac{2a^2}{b}$	$\frac{a^2}{h}$	$\frac{b^2}{a}$	$\frac{2b^2}{a}$	
	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is:		b	· ·		u	
2	Equation of tanger		$xx_1 + yy_1 = a^2$	$xx_1 - yy_1 = a^2$	$xy_1 + x_1y = a^2$	$xy_1 - x_1y = a^2$	
ĺ	$x^2 + y^2 = a^2$ at (x	(x_1, y_1) is:					
3	If α , β , γ are dire						
	of a vector then		3	1	2	0	
ŀ	$\cos^2 \alpha + \cos^2 \beta + \cos^2 \beta$	$100^2 \times -2$					
4							
4	For what value of		2	1.5	15	3	
	$5\hat{i} - \hat{j} + \hat{k}$ and α	$\hat{i} + 3\hat{j} - 3\hat{k}$ are	-3	15	-15	,	
	parallel to each oth			1 3			
5	If any two vectors		1	/-I	2	0	
	product are equal	then value is:			1NUD		
6	$(1)^{2n}$		e^{-1}	VIII.	e^2	e^3	
	$\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^{2n} = ?$		A SA	e 2			
		2		THE STATE OF THE S			
7	The function $f(x)$	$-\frac{x^2+1}{1}$ is				1	
1	The function $f(x)$	$\frac{1}{x-1}$ is	x=2	x = 0	x = -1	x = 1	
	discontinuous at:				4.45.45.3		
8	Derivative of x^0 w	vith	0		1	С	
	respect to $'x'$ is:	900000000000°	11	NEW Y	ļ		
9		a Girls	f'[g(x)]	A Walley	f'[g(x)]g'(x)	f[g(x)]g'(x)	
	$\frac{d}{dx}[fog(x)]=?$	1 Continue	1.66.1	A CONTRACTOR	1 19 () 18 ()	2 10 (-) 10 (-)	
10		, ///	Tangent of	Slope of line	Slope of	Slope of	
	Geometrically $\frac{dy}{dx}$	means:	Sope		x - axis	tangent	
			CLASS STATE OF THE	CLC	1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		
11	$\lim_{h\to 0} \frac{f(a+h)-f}{h}$	$\frac{(a)}{a} = 2$	f'(a)	f'(x)	f'(a+h)	f(a)	
12	$\int f'(x) \int dx$		$\ell n x + \epsilon \sqrt{1}$	$\ln f(x) + c$	$\ell n f'(x) + c$	f(x)	
	$\int \frac{f'(x)}{f(x)} dx = ?$		do. 45555500				
13	1000000	re n + Trans	Car 6\n+1"	$(ax + b)^{n+1}$	$\frac{(ax+b)^{n+1}}{a(n+1)}+c$	$(ax+b)^{n+1}$	
15	$\int (ax + b)^n dx$ whe	TE N ≠ -1.18.	$\frac{(ax+c)}{-}+c$	$\frac{(ax+b)}{+c}$	$\frac{(ax+b)}{a(n+1)}+c$	+ c	
		Va Ex	n+1	a	u(" + 1)	n	
1.4	Car : Jakan	18 18 18 18 18 18 18 18 18 18 18 18 18 1	2 x-1	28.0.2	2 ^{x+1}	2.*	
14	$\int 2^x dx = ?$		$x2^{x-1}+c$	$2^{x} \ln 2 + c$	+c	$\frac{2^x}{\ell n2} + c$	
		Marine Arthur			x+1	ln2	
15	When expression	Ja2 2 2					
	involve in integrat		$x = a \sin \theta$	$x = a \sec \theta$	$x = a \tan \theta$	$x = \sin \theta$	
	substitute:						
16	All points (x, y)	with $x < 0$ $v < 0$	I	II	III	IV.	
	lies in quadrant:	*****	_				
17	Slope of line pass	ing through	V . V	11 1 1	1 ×	12 - 12	
1/	points $A(x_1, y_1)$		$\frac{x_2 - x_1}{x_2 - x_1}$	$\underline{y_2 + y_1}$	y_2-x_2	y_2-y_1	
		and	$y_2 - y_1$	$x_2 + x_1$	$y_1 - x_1$	$x_2 - x_1$	
	$B(x_2, y_2)$ is:						
18	Equation of vertic	al line through	y = -5	y=5	x=3	x=-3	
	points $(3, -5)$ is:					ii ii	
19	Which of the follo	wing ordered	(1, 1)	(3, 0)	(-2, 1)	(0, 0)	
	pair does not satis						
20	Radius of circle x		5	25	$\sqrt{5}$	5	
	radius of chele x	1y = 313.			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	$\frac{5}{2}$	
- 1			L	1	024(1 st -A)-15000		

	ERMEDIATE PART-II (12th Class)		2024	(1 st -A)	Roll No:			
	THEMATICS PAPER-II GROUP-I E ALLOWED: 2.30 Hours	Τ	SHRI	ECTIV	7 E.	MAXIMUM MARKS: 80			
	E: Write same question number and its parts	numb							
	SE	CTIC		MT	$\widehat{\mathbf{x}}$				
	ttempt any eight parts.	1	(ii)	Deter	nine v	$8 \times 2 = 16$ whether $f(x) = \sin x + \cos x$ is ever			
(i)	Discuss continuity of $g(x) = \frac{x^2 - 9}{x - 3}$, $x \ne 3$ at $x \ne 3$	=3	(11)	or odd					
(iii)	Define Constant Function. Give one example al	lso.	(iv)), when $f(x) = \frac{2x+1}{x-1}$ where $x > 1$			
(v)	Differentiate $\left(\sqrt{x} - \frac{1}{\sqrt{x}}\right)^2$ w.r.t 'x'.		(vi)	Find -	$\frac{dy}{dx}$, if	$y^2 + x^2 - 4x = 5$			
(vii)	Find derivative of $x^2 - \frac{1}{x^2}$ w.r.t. x^4		(viii)	Prove	that -	$\frac{d}{dx}[\cot^{-1}x] = -\frac{1}{1+x^2}, \ x \in R$			
(ix)	Determine the values of x for which f defined	as	(x)	Define	Taylo	or series expansion of function f			
	$f(x) = x^2 + 2x - 3$ is increasing.			at $x =$	а				
(xi)	Find y_2 , if $y = \ln\left(\frac{2x+3}{3x+2}\right)$		(xii)		Find $\frac{dy}{dx}$, if $y = xe^{\sin x}$				
. At	tempt any eight parts.	1		L		$8 \times 2 = 16$			
(i)	Find dy if $y=x^2+2x$ and x changes from 2	(ii)	E	aluate	<u></u>	dx			
····	to 1.8.	1							
(iii)	Evaluate $\int \cos 3x \sin 2x dx$	(iv)) Ev	aluate	sec :	x dx			
(v)	Evaluate $\int x^2 \ln x \ dx$	(vi)	Ev	aluate	$\int_{0}^{\pi/4} \sec x$	$\frac{x}{(\sec x + \tan x)} \frac{dx}{dx}$			
(vii)	Solve the differential equation $\frac{dy}{dx} = \frac{y^2 + 1}{e^{-x}}$	(vii				pints $A(3, 1)$, $B(-2, -3)$ and rtices of an isosceles triangle.			
(ix)	Find slope and inclination of the line joining the points $(3, -2)$ and $(2, 7)$.								
(x)	Find an equation of the line through $(-5, -3)$ a	nd (9	9, -1).	Ka					
(xi)	Convert the equation $15y-8x+3=0$ into norm	nal fo	rm.						
(xii)	Find the angle from the line with slope $\frac{-7}{3}$ to the	ne line	with sl	ope $\frac{5}{2}$.					
	tempt any nine parts.					9 × 2 = 18			
(i)	What are Decision Variables?				graph	of inequality $2x + 3y \le 12$			
(iii)	Find the centre and radius of the circle $x^2 + y^2$	- 2			2				
(iv)	Check the position of the point (5, 6) with response			$le x^2 +$	$y^2 =$	81			
(v)	Find the focus and directix of the parabola $x^2 =$					-			
(vi)	Write an equation of the ellipse with centre (0, 0)) foci	us (0, -	3), ve	tex (0	, 4).			
vii)	Find foci and eccentricity of $x^2 - y^2 = 9$					2			
viii)	Find the length of the tangent drawn from the po		(-5, 10)) to the	circle	$5x^2 + 5y^2 + 14x + 12y - 10 = 0$			
(ix)	Write the direction cosines of $\underline{v} = 2\underline{i} + 3\underline{j} + 4\underline{k}$								
(x)	Find a vector whose magnitude is 4 and parallel to $2\underline{i} - 3\underline{j} + 6\underline{k}$								
(xi)	Find $\underline{b} \times \underline{a}$ where $\underline{a} = 3\underline{i} - 2\underline{j} + \underline{k}$, $\underline{b} = \underline{i} + \underline{k}$	⊦ <u>j</u>							
xii)	Find the value of $3\underline{i} \cdot \underline{k} \times \underline{i}$	(x		<u>a+b</u> -	$-\underline{c}=0$, then prove that $\underline{a} \times \underline{b} = \underline{b} \times \underline{c}$			
OTE		CTIO	N-II			$3 \times 10 = 30$			
.(a)		If x=	$=a\cos^3$	θ , $y=$	b sin	$\frac{3 \times 10^{-30}}{3 \theta}$, show that: $a \frac{dy}{dx} + b \tan \theta = 0$			
(a)	If $y = (\cos^{-1} x)^2$, prove that (b)					$= \frac{a^2}{2}\sin^{-1}\frac{x}{a} + \frac{x}{2}\sqrt{a^2 - x^2} + c$			
	(- 1.))2 1.91								
(a)	Evaluate $\int_{0}^{\sqrt{3}} \frac{x^3 + 9x + 1}{x^2 + 9} dx$ (b)		2.50			$+5y$ subject to the constraints $x \ge 0$, $y \ge 0$			
(a)	Write an equation of the circle that passes throug	$\frac{1}{gh} A$	(-7, 7), $B(5)$	-1),	C(10,0)			
(b)	Prove that in any triangle ABC $a = b \cos C + \frac{1}{2}$				//				
(a)	Find the focus, vertex and directix of the parabol			8y+4	= 0				
` \	The midpoints of the sides of a triangle are (1, -					•			
	Find coordinates of the vertices of the triangle.		-						

Nun	er Code 1ber: 4196	INTERMEDIATE P		lass) R	oll No: MT	N-2-2
		S PAPER-II GROUP				
O.N		ED: 30 Minutes re four choices for each objective	OBJECT		XIMUM MAR	
Q.11	is correc	et, fill that bubble in front of the	e type question at guestion num	as A, B, C and L ber. on bubble s	heet. Use mark	er or pen to
	fill the b	ubbles. Cutting or filling two o	r more bubbles	will result in zer	o mark in that	question.
S.#		QUESTIONS	A	В	C	D
1	The equation $x^2 = -16y$	of directix of the parabola	y + 4 = 0	y-4=0	x + 4 = 0	x-4=0
2	The eccentric	city of $\frac{y^2}{4} - x^2 = 1$ is:	$\frac{\sqrt{5}}{2}$	$\frac{2}{\sqrt{5}}$	$\frac{-2}{\sqrt{5}}$	2
3	$3\hat{i} \cdot (2\hat{j} \times \hat{k})$	=?	0	2	3	6
4	$Cos \theta$ equal	to:	$\hat{a} \times \hat{b}$	$\hat{a}\cdot\hat{b}$	$ \hat{a} \times \hat{b} $	$\underline{a} \times \underline{b}$
5	The length o	f the vector $2\hat{i} - 2\hat{j} - \hat{k}$ is:	3	West 4	5	2
6	The function and y is:	$x^2 + xy + y^2 = 2 \text{ of } x$	Constant	Even	Implicit	Explicit
7	If $f(x)=2x$	-8 , then $f^{-1}(x) = ?$	8 – 2 <i>x</i>	8+2x	$\frac{x-8}{2}$	$\frac{x+8}{2}$
8	$\frac{d}{dx}(3^x) = ?$		$\frac{3^{x}}{\ell n 3}$	xln3	3× ln3	$3^{x} \ln x$
9	If $y = \cos^{-1}$	$\frac{x}{a}$, then $\frac{dy}{dx} = ?$	$\frac{-1}{\sqrt{a^2-x^2}}$	$\frac{-a}{\sqrt{ x^2 +a^2}}$	$\frac{a}{\sqrt{x^2 - a^2}}$	$\frac{a}{\sqrt{a^2 - x^2}}$
10	$\frac{d}{dx}(\cos x) =$?	sinx	-secx	sec x	$-\sin x$
11	If $y = \cos^{-1} \frac{1}{x}$	$\frac{x}{a}$, then $\cos y = ?$		$\frac{x}{a}$	$\frac{y}{a}$	sin y
12	$\int_{0}^{\pi} \sin x \ dx = 0$		$\cos \pi$	0	1	2
13	$\int \tan x \ dx =$?	$ \ln \sec x + c$	$\ln \cos ecx + c$	$\ln \sin x + c$	$\ln \cot x + c$
14	$\int \frac{e^x}{e^x + 5} dx =$	-7	$(e^x + 5) + c$	$\ln\left(e^x+5\right)+c$	$e^{2x} + 5$	$e^{2x} + 7 + c$
15	$\int -\cos ec^2x$	dx = ?	$\cos x + c$	$\tan x + c$	$\cos ec x + c$	$\cot x + c$
16		nclination of line ℓ , then $\frac{y_1}{\alpha} = r(say)$ is called:	Point-slope form	Normal form	Symmetric form	Two-points form
17	Equation of I third quadran	ine bisecting first and t is:	x = 0	<i>y</i> = 0	y = -x	y = x
18		cular distance of line = 0 from the origin is:	3	2	1	0
19	The graph of	$2x \ge 4$ lies in:	Upper Half	Lower Half	Left Half	Right Half
			Plane	Plane	Plane	Plane
20	Radius of circ	ele $x^2 + y^2 = 5$ is:	5	-5	$\sqrt{5}$	25

TIMI NOTE	HEMATICS PAPER-II GRO E ALLOWED: 2.30 Hours E: Write same question number and its	UP-II SUB.	IFCTI	X70				
NOTE 2. At (i)					- 1	MAXIMUM MARKS: 80		
2. At		s parts number of			n in t			
(i)		SECT	TONT T	1TN-2		1/		
	tempt any eight parts.	Т						
(111)	Define Implicit Function. (ii)	Without finding	(iv)			n and range of f^{-1} $f(x) = \sqrt{x+2}$		
	Prove that $\lim_{x\to 0} (1+x)^{\frac{1}{x}} = e$		(vi)	Evaluate $\lim_{x\to 0}$	$\frac{\sin x}{x}$	<u> </u>		
(v)	Find by definition, derivative of $2x^2 + 1$ with respect to x Find $\frac{dy}{dx}$ if $y^2 - xy - x^2 + 4 = 0$			Differentiate w	Differentiate with respect to 'x' $\frac{x^2+1}{x^2-3}$			
(vii)				Find $\frac{dy}{dx}$ if x	$\frac{dy}{dx} \text{ if } x = y \sin y$			
(ix)	Find $f'(x)$ if $f(x) = x^3 e^{\frac{1}{x}}$, $x \neq 0$			Find y_2 if $y = \ln\left(\frac{2x+3}{3x+2}\right)$				
(xi)	By Maclaurin's series, show that		(xii)			interval f' is increasing or		
	$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots$			decreasing for				
				$f(x) = 4 - x^2$, x			
	tempt any eight parts.					8 × 2 = 16		
(i)	Find δy and dy in $y = x^2 - 1$ whe			3.02.				
(ii)	Evaluate the integral $\int \frac{1}{x^2 + 4x + 13} dx$		(iii)	Evaluate the integral $\int x \ln x dx$				
(iv)	Evaluate $\int_{-2}^{0} \frac{1}{(2x-1)^2} dx$		(v)	Find the area be the x - axis.	ound	ed by the curve $y = x^3 + 3x^2$ and		
(vi)	Solve the differential equation $\sin y \csc x \frac{dy}{dx} = 1$			Find the general solution of the equation $\frac{dy}{dx} - x = xy^2$				
viii)	Show that the points $A(3, 1)$, $B(-2, -1)$	-3) and $C(2, 2)$	are ver					
(ix)	The xy - coordinate axes are rotated about the origin through the indicated angle and the new axes are OX and OY . Find the xy - coordinates of P with the given XY - coordinates $P(-5, 3)$; $\theta = 30^{\circ}$							
(x)	Write down an equation of the straight 1					oint of intersection of the lines		
(1)	and parallel to a line passing through the	(J, 1) (-15)	5x +	-7y =	= 35, 3x - 7y = 21			
xii)	Find an equation of the line with $x - in$							
. Att	empt any nine parts.	42				9 2 = 18		
(i)	Define Feasible Solution.	(ii)	Graph	the inequality	x+2	<i>y</i> < 6		
(iii)	Find the equation of the circle with cent	re at (a/2 3a/3) and r	adius 2√2				
(iv)) and i	adius 2 V 2 .				
	Find focus and directix of the parabola			· · · · · · · · · · · · · · · · · · ·				
(v)	Find length of tangent from the point (-							
(vi)	Find the centre and the foci of ellipse 9x	$x^2 + y^2 = 18$ (vii)	Writ	e equation of hy	perbo	ola with foci (±5,0) and vertex (3,0)		
viii)	Define Conic Section. (ix) Find the	e vector from the	point A	to the origin wh	ere A	$\overrightarrow{B} = 4\underline{i} - 2\underline{j}$ and B is the point $(-2,5)$		
(x)	If $\left \alpha \underline{i} + (\alpha + 1)\underline{j} + 2\underline{k}\right = 3$. Find the value of α .							
xi)	Show that the vectors $3\underline{i} - 2\underline{j} + \underline{k}$, \underline{i}	$-3\underline{j}+5\underline{k}$ and $2\underline{k}$	$\underline{i} + \underline{j} -$	$4\underline{k}$ form a right	angle	e.		
xii)	If $\underline{a} + \underline{b} + \underline{c} = 0$, then prove that \underline{a}							
xiii)	A force $\underline{F} = 2\underline{i} + \underline{j} - 3\underline{k}$ acting at a po	oint $A(1, -2, 1)$		the moment of \underline{I}	E abo	out the point $B(2, 0, -2)$		
OTE:	: Attempt any three questions.	SECTIO	OIA-II			3 × 10 = 30		
(a)					(b)			
	If $f(x) = \begin{cases} \frac{\sqrt{2x+5} - \sqrt{x+7}}{x-2}, \\ \frac{x-2}{k}, \end{cases}$	$x \neq 2$ $x = 2$				Show that $\frac{dy}{dx} = \frac{y}{x}$ if $\frac{y}{x} = \tan^{-1} \frac{x}{y}$		
	Find value of k' so that f' is continu	ous at $x = 3$.		-		N N		
(a)	If $y = e^x \sin x$, show that $\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + 2y = 0$			(b) Evaluate $\int \sqrt{3-4x^2} dx$				
(a)	Evaluate $\int_{0}^{\sqrt{3}} \frac{x^3 + 9x + 1}{x^2 + 9} dx$		(b)	(b) Graph the feasible region of the following system of linear inequalities and find the corner points. $2x+3y \le 18$, $2x+y \le 10$, $x+4y \le 12$, $x \ge 0$, $y \ge 0$				
(a)	Find volume of the tetrahedron with vert	ices $A(2,1,8)$, B	(3, 2, 9), C(2, 1, 4) as	nd D	0(3, 3, 10)		
(b)	Write equations of two tangents from (2,	100000000000000000000000000000000000000						
	Show that the equation $9x^2 - 18x + 4y$				ind i	a alements		
(a)	show that the equation $9x - 10x + 4$	y + 6y - 23 = 0	1000	[-3,2), B(5,4)		s cientents.		

16-2024(1st-A)-12000 (MULTAN)